纳米碳材料具有导电性高、比表面积大、化学成分和结构可调、资源丰富、可持续性强等特点,在先进催化电极材料,染料光降解剂、染料吸附剂及荧光传感器等方面具有潜在的应用价值。
理学院稀土化学及应用辽宁省重点实验室李文泽教授团队带领刘禹博士,张潇飒博士及栾健博士近年来纳米碳材料方面取得以下进展:
一、纳米碳负载催化剂
通过浸渍法将离子液体(IL)负载到乙炔黑(AB)载体上制备IL@AB催化剂,并与电解液中的表面活性剂分子协同作用调节电极-电解质界面结构提升催化剂性能。研究发现,IL@AB催化剂使电合成H2O2的选择性成倍增加,并且在电解液中加入阳离子表面活性剂,可以使固-液界面上的过氧化物阴离子更容易解吸,从而使H2O2的选择性进一步提高(高选择性可以长时间保持稳定)。(该工作发表在Chemical Engineering Journal, 2022, 444, 136665,图1)
图1. 纳米碳修饰材料用于电催化研究
此外,课题组利用电化学沉积法成功制备Cu/CP催化材料,通过对沉积条件的控制能够实现对负载Cu物种化学结构和形貌的调控。使其中晶枝状纳米铜具有晶粒尺寸小、电化学比表面积大、阻抗小的优点。这类Cu/CP催化剂在电化学辅助CO2和氧化苯乙烯SO的环加成反应中表现出较高的活性可以高效催化SO和CO2的环加成反应制备碳酸苯乙烯脂(SC)。该反应体系的建立为CO2资源的高效利用以及电化学合成精细化学品SC提供了一条绿色、可持续的新途径。(该工作发表在(Chem. Eur. J, 2022, 28, e202200622,图2)
图2. Cu/CP电催化剂催化CO2和SO电化学环加成制备SC示意图
二、纳米碳染料光降解剂
通过直接碳化以及纳米碳和杂原子掺杂策略合成碳纳米结构,该类纳米碳材料可以快速的光催化降解去除水中的染料,该研究为大规模水处理提供了一种优良的高性价比碳纳米材料。(Dalton Trans, 2021, 50, 18173;Journal of Environmental Chemical Engineering, 2022, 10, 108215;Dalton Trans, 2022, 51, 17319 图3; Journal of Solid State Chemistry, 2021, 303, 122506)
图3. 具有光催化降解性能的碳包覆金属氧化物异质结碳纳米材料
三、纳米碳染料吸附剂
本研究采用热解法将配合物作为前驱体直接碳化,或者将杂原子从MOF的催化剂前驱体中加入到层状碳纳米结构中可以改善吸附性能。研究成果揭示了具有高比表面积和热稳定性的碳基纳米材料对有机染料选择性吸附,相关工作发表在( Dalton Trans, 2021, 50, 10549 (图4)、 Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 700、 RSC Adv, 2021, 11, 33102和Journal of Solid State Chemistry, 2021, 304, 122589 )
图4. 具有附性能的碳纳米材料
四、纳米碳荧光传感器
本研究制备并验证了碳基纳米材料在荧光传感方面的优秀性能(Journal of Environmental Chemical Engineering, 2022, 10, 108215图5),揭示热解后纳米碳材料具有发光特性,可作为废水分析物检测的可选功能材料。
图5. 废水分析物检测的碳纳米材料
上述工作得到国家自然科学基金、国家博士后基金、辽宁省自然科学基金、辽宁省教育厅基金、沈阳化工大学重点攻关和服务地方项目的支持。
本课题组近三年发表论文代表作如下(沈阳化工大学第一单位):
[1]. Yu Liu, Jia-Long Zhang, Xing-Yu Lu, Gui-Rong Zhang, Ke Qi, Yun-Li Bai, Wei Qi. Highly efficient electroreduction of oxygen to hydrogen peroxide on carbon catalyst via electrode-electrolyte interface engineering. Chemical Engineering Journal, 2022,444, 136665; Doi: 10.1016/j.cej.2022.136665 (JCR一区,IF: 16.744)
[2]. Wen-Ze Li, Ke Qi, Xing-Yu Lu, Yu-Jie Qi, Jia-Long Zhang, Bing-Sen Zhang, Wei Qi. Electrochemically Assisted Cycloaddition of Carbon Dioxide to Styrene Oxide on Copper /carbon Hybrid Electrodes: Active Species and Reaction Mechanism. Chem. Eur. J, 2022, 28, e202200622; Doi: 10.1002/chem.202200622 (JCR二区,IF: 5.02)
[3] Yu Liu, Ai-Ai Yang, Xiao-Sa Zhang, Ze-Bang Sun, Wen-Ze Li, Yan Wang, Jian Luan. Hai-Chao Liu, Synthesis of metal–organic coordination polymers and their derived nanostructures for organic dye removal and analyte detection. Journal of Environmental Chemical Engineering, 2022, 10, 108215; Doi: 10.1016/j.jece.2022.108215 (JCR一区,IF: 7.968)
[4] Xiao-Sa Zhang, Hong-Tian Zhao, Yu Liu, Wen-Ze Li, Nan Luo and Jian Luan. Ligand-induced synthesis of two Cu-based coordination polymers and derivation of carbon-coated metal oxide heterojunctions for enhanced photocatalytic degradation. Dalton Trans, 2022, 51, 17319-17327; Doi: 10.1039/d2dt03023c (JCR一区,IF: 4.569)
[5] Yu Liu, Yan Wang, Xiao‑Sa Zhang, Wen‑Ze Li, Ai‑Ai Yang, Jian Luan, Hong‑Zhu Liu, Zhong‑Gang Wang. Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 700; Doi:10.1007/s10904-021-02157-0 (JCR二区,IF: 3.518)
[6] Xiao-Sa Zhang, Hong-Tian Zhao, Yu Liu, Wen-Ze Li, Ai-Ai Yang and Jian Luan. Cu–Organic framework-derived V-doped carbon nanostructures for organic dye removal. Dalton Trans, 2021, 50,18173; Doi: 10.1039/d1dt03450b (JCR一区,IF: 4.569)
[7] Yu Liu, Ai-Ai Yang, Yan Wang, Wen-Ze Li, Xiao-Sa Zhang, Jian Luan, Hong-Zhu Liu, Zhong-Gang Wang. Synthesis of two polymorphic Cu-based coordination polymers of 1,2,4-benzenetricarboxylic acid along with a carbon-coated composite for
the selective degradation of organic dyes. Journal of Solid State Chemistry, 2021, 303 122506; Doi: 10.1016/j.jssc.2021.122506 (JCR二区,IF: 3.656)
[8] Xiao-Sa Zhang, Hong-Tian Zhao, Yu Liu, Wen-Ze Li, Yan Wang, Xiao-Yu Zhao, Ai-Ai Yang and Jian Luan. Efficient and selective removal of Congo red by a C@Mo composite nanomaterial using a citrate-based coordination polymer as the precursor. Dalton Trans, 2021, 50, 10549; Doi: 10.1039/d1dt01655e (JCR一区,IF: 4.569)
[9] Xiao-Sa Zhang, Hong Xiang, Wen-Ze Li, Ying-Ying Li, Xiang-Rong Ma, Ze-Zhou Yang and Yu Liu. Preparation of diameter-controlled free-standing MWCNT membranes and their application for dye Adsorption. RSC Adv, 2021, 11, 33102; Doi: 10.1039/d1ra06701j (JCR二区,IF: 4.036)
[10] Yu Liu, Yan Wang, Wen-Ze Li, Ai-Ai Yang, Xiao-Sa Zhang, Hong-Zhu Liu, Zhong-Gang Wang. Reversible switching of Cu-tetracarboxylic-based coordination polymers through in situ single-crystal-to-single-crystal structural transformation and
their impact on carbon-based composite derivatives, fluorescence, and adsorption properties. Journal of Solid State Chemistry, 2021, 304, 122589; Doi: 10.1016/j.jssc.2021.122589 (JCR二区,IF: 3.656)
[11] Yu Liu, Li-Fei Pang, Ting-Jun Liu, Jin-Yu Guo, Jiu-Yang Wang, Wen-Ze Li. Novel triphenylamine polyazomethines bearing carbazole and trifluoromethyl substituents: Preparation and electrochromic behavior Dyes and Pigments, 2020, 173, 107921; Doi: 10.1016/j.dyepig.2019.107921(JCR一区,5.122)
[12] Yu Liu, Ting-Jun Liu, Li-Fei Pang, Jin-Yu Guo, Jiu-Yang Wang, Duo Qi, Wen-Ze Li, Kun-Zhi Shen. Novel triphenylamine polyamides bearing carbazole and aniline substituents for multicolored electrochromic applications. Dyes and Pigments, 2020, 173, 107995; Doi: 10.1016/j.dyepig.2019.107995(JCR一区,5.122)
[13] Yu Liu, Jin-Yu Guo, Jiu-Yang Wang, Xiao-Yu Zhu, Duo Qi, Wen-Ze Li, Kun-Zhi Shen. A novel family of optically transparent fluorinated hyperbranched polyimides with long linear backbones and bulky substituents. European Polymer Journal, 2020, 125, 109526; Doi:10.1016/j.eurpolymj.2020.109526(JCR一区,5.546)
[14] Yu Liu, Jiu-Yang Wang, Jin-Yu Guo, Duo Qi, Kun-Zhi Shen, Wen-Ze Li. Novel fluorinated long linear segment hyperbranched polyimides bearing various pendant substituents for applications as optical materials. Polymer, 2020, 190, 122216; Doi: 10.1016/j.polymer.2020.122216(JCR一区,4.432)